Subscribe to Updates and Newsletters

Best LED Troffers | Recessed Ceiling Lights for Offices, Educational and Health Facilities

Abstract: LED troffers are overhead lighting systems commonly found in offices, classrooms, healthcare facilities, and other commercial and institutional spaces. Preference for recessed LED troffers has shifted towards volumetric troffers which produce balanced illumination and offer a pleasing architectural aesthetic.

LED Troffer

Troffers are general-purpose luminaires designed to satisfy the requirement of a wide range of visual tasks in an interior space. They may also be used to provide ambient lighting that fills spaces with a soft level of overall light, making navigating a space visually comfortable, and allowing other basic visual recognition. Troffers are generally designed as recessed light fixtures that are configured to be flush with the ceiling. In office buildings, schools, and healthcare facilities, grid ceilings are often provided to serve as a false or secondary ceiling (also called a "dropped ceiling"). They are hung below the structural ceiling of the building and hide HVAC ducts, pipes, electrical wiring and the like that are installed within the plenum space. Troffer fixtures are secured in the drop ceiling through lay-in or T-grid installations.

LED Troffer
Image courtesy of Deco Lighting


Drop ceilings typically have square openings into which ceiling tiles are integrated to produce a finished ceiling for a space. The cell sizes vary slightly in different markets and so do the sizes of recessed troffers. In the United States and its neighboring countries, the cell size of most standard T-bar grid ceilings is 2 by 2 feet (610 mm x 610 mm), and light fixtures are recessed into the square cell or a rectangular opening which is 2 by 4 feet (610 mm x 1,220 mm) by size. Recessed troffers are designed accordingly with a slightly smaller size: 603 mm x 603 mm and 603 mm x 1212 mm for 2' x 2' and 2' x 4' ceiling openings respectively. In China and most European countries, the cell size in the suspension grids is 600 x 600 mm, and the recessed fixtures are 5 mm smaller at 595 mm x 595 mm or 595 mm x 1195 mm. In Germany, the cell size in the suspension grids is 625 mm x 625 mm and the square troffer size is 620 mm x 620 mm. Recessed troffers are also available in linear shapes (4"-12" wide, e.g. 1' x 4').

Lighting Technology

Troffers were previously the realm of fluorescent lamps which produce light through gas excitation and fluorescence of a phosphor coating inside the glass tube. Notwithstanding their advantages over incandescent and halogen bulbs, fluorescent lamps have a number of problems, including relatively low efficiency, high operating voltages, short life expectancy, poor color quality, emission of ultraviolet (UV) light, cold weather operation, and the use of fragile glass and environmentally unfriendly mercury. As such, fluorescent troffers are rapidly falling out with the advent of solid state lighting based on light emitting diode (LED) technology, which addressed virtually all the limitations of fluorescent lighting.

LED technology profoundly changed the way light was generated. In LEDs, light, as result of combined electroluminescence and photoluminescence (fluorescence), is emitted from a block of semiconductor, rather than from a glass tube or bulb. The semiconductor device is designed with a p-n junction (active layer) formed between epitaxial layers. When a forward bias is applied across the epitaxial layers, electrons will drop down from the conduction band of the n-doped epitaxial layer and recombine with holes from the valence band of the p-doped epitaxial layer in the active layer. The recombination releases radiant energy in the form of photons which usually have a FWHM value in the range of from about 15 nm to about 30 nm. The monochromatic light emitted by the diode is further converted to a broadband white light through phosphor down-conversion within the device package. While the upfront cost of an LED system is higher than that of fluorescent systems to various extents, the benefits that come with LED lighting far outweigh legacy lighting technologies.

  • The energy conversion efficiency of LEDs now approaches 50%, which is 3-4 times the luminous efficiency of fluorescent lights, and promises even higher percentages. By the very nature of their design and operation, LEDs are directional light sources. The direct nature of LEDs allows light fixtures to achieve a high system optical efficiency (90% to 95%), which is impossible with conventional light fixtures.
  • LEDs can be designed to produce a spectral power distribution (SPD) more uniformly spread throughout the visible spectrum for excellent color rendering.
  • A precisely controllable spectral characteristic of the radiant energy allows LEDs to emit light with any correlated color temperature (CCT).
  • Unlike fluorescent technologies that have restricted controllability and dimmability as they are limited by the specifications of their ballasts, LEDs are fully dimmable and their light output can be controlled using phase, analog and digital dimming technologies.
  • The nearly instantaneous response to input from switches, sensors, or mobile devices make these semiconductor devices well suited to application-specific controls, smart lighting, and the Internet of Things (IoT).
  • Under optimal thermal management, LEDs can operate for a considerably longer time as compared to a fluorescent light source.
  • Moreover, the solid-state nature of LEDs results in excellent resistance to shock and vibration, thereby contributing to a long operating life.

Design and Construction

Troffers used to be lamp-based luminaires that incorporate one, two, or three T12, T8, or T5 linear fluorescent lamps (four is rare). 2' x 2' troffers may also use U-bend fluorescent lamps or compact fluorescent lamps. These light fixtures were later on retrofitted by LED tubes and LED bulbs having the same form factors with the original light source. Modern troffers are integrated performance luminaires that mount LED modules onto the metal housing. The performance of the troffer is derived from the light source in conjunction with the luminaire's optical system. The beam distribution of both the lamp-based and integrated troffers comes from the distribution of the light source by an optical system such as a reflector, refractor, or diffuser. However, integrated luminaires are capable of delivering highly efficient and precisely controlled optical distributions that are not impossible with lamp-based luminaires. Integrated design also reduces physical volume of the luminaire while allowing more efficient thermal management of the LEDs by employing the entire housing for heat sinking. Troffers come in a variety of designs, resulting in distinctions in terms of luminaire efficiency, glare control, visual appearance, and cost. The most common types of troffers are volumetric troffers, parabolic troffers, diffused/lensed troffers, and edge-lit LED panel lights

Volumetric troffers

Volumetric troffers are a type of "reflected direct" luminaires that make use of light reflecting off the inner surface of a recessed housing from concealed or obscured sources. These luminaires feature a center-basket (or dual-basket) lens that hides light source from direct view and directs light onto the upper reflector surface. The center basket that hosts light tubes is usually made of perforated metal backed with diffuse acrylic. The integrated type troffers use linear modules of reflow soldered discrete LEDs. An opaque basket, which is usually an acrylic lens with refractive optical elements, eliminates pixelation and delivers a low-glare, diffused light distribution. The upper reflector which is die formed from cold rolled sheet steel is commonly a smooth surface with a matte, high-reflectance finish which creates a comfortable visual transition from the lens to the ceiling plane. Volumetric illumination balances the delivery of horizontal and vertical illuminance, thereby reducing shadows, improving spatial rendering and increasing the perceived volume of the space. The optical design of volumetric troffers creates a balance of luminaire efficiency and visual comfort, resulting in lighting quality and architectural aesthetics that are generally preferred over that created with parabolic troffers.

Volumetric troffers

Parabolic troffers

Parabolic troffers feature a grid of parabolic louvers that form an array of cells with size ranging from 1.27 cm x 1.27 cm (0.5' x 0.5') to almost 30.48 cm x 30.48 cm (12' x 12'). The blades of parabolic louvers provide a physical cutoff angle which is the angle from vertical of a line drawn from the bottom of a parabolic cell to the top of the opposite. For precise cutoff, the physical cutoff should be identical with the optical cutoff angle which is determined the reflective curve of the parabolic cells. Parabolic louvers of the smaller cell types are usually injection-molded plastic vacuum-metallized with aluminum. Parabolic louvers of the larger cell types are often made from aluminum sheets, anodized prior to forming. The louvers can be surface finished to provide various degrees of specularity. A specular finish enables parabolic cells to control light output precisely so that almost no light is emitted above the cutoff angle. This also makes the louvers appear completely dark when viewed at a distance and prevents images from appearing in VDT screens. Semi-specular or white finishes are used to brighten the appearance of the troffer thus making space feel brighter. However, high luminance as a result of brighter surface finish may show up as reflections in VDT screens. Parabolic louvers had been designed for lamp-based systems and are being phased out in favor of design with integrated cell arrays where LEDs nestle.

Parabolic troffers

Diffused/lensed troffers

Diffused/lensed troffers are direct-lit luminaires that use either opal diffusers or refractive lenses to create smooth and uniform light emissions, or to avoid unwanted glare. They find applications where low cost is paramount or where an enclosed fixture is required. Diffusers with evenly scattered penetration (opal) are used to distribute luminous flux from light source evenly to all directions thus does not create an image of the light source. However, the radiation pattern of LEDs creates hot spots that require a high level of diffusion to reduce. This will cause large amounts of scattering loss and compromise light extraction efficiency. The photometric distribution of the light may be controlled with a lens that incorporate a series of small prisms - basically this is a refractor. The prismatic configuration is designed to reduce the luminance of the luminaire in the near-horizontal viewing angles between 45° and 90° from vertical. Diffusers and lenses are injection-molded from polycarbonate (PC) or polymethylmethacrylate (PMMA or acrylic).

Diffused/lensed troffers

Edge-lit LED panel lights

Edge-lit LED panel lights provide a revolutionary solution to replace incumbent, inefficient fluorescent fixtures as well as to eliminate the harshness of LED light. LEDs are embedded along the edge of an aluminum frame and emit light through a light guide plate (LGP) made of PC or PMMA. The light guide transports light by means of total internal reflection (TIR) and then extracts, distributes light uniformly towards a high-transmittance diffuser, which further scatters the light rays producing a wide radiation pattern and spreads the light out evenly across the entire span of the panel. Edge-lit LED luminaires deliver a fully luminous panel of soft, visually comfortable light with incomparable illuminance uniformity. A clean, modern look and the ultra-thin profile makes them a perfect option for applications that require general lighting to blend into contemporary architectural designs.

Edge-lit LED panel lights

Light Source

Mid-power LEDs are the usual choice for general lighting applications where a high density of light is not required but uniform illumination, high efficacy and low cost are crucial. Before the widespread adoption of chip scale package (CSP) LEDs which are less prone to temperature-dependent failures and have high drive current capability, the performance and lifespan of LED troffers are severely affected by the undependable plastic leaded chip carrier (PLCC) packages. PLCC-based SMD LEDs have an attractive initial lumen/watt because of the use of the highly reflective plastic housing and silver plating. However, these LED packages are inheretly unreliable. The plastic housing has very limited thermal tolerance. Driving the LEDs with an excessively large current may cause a wire bond breakage due to electromigration. The sliver plating of leadframe has poor chemical stability especially against sulfur contamination.

As a result, PLCC packages are highly susceptible to accelerated lumen depreciation and color shifts under the conditions of high operating temperature, high current density, high humidity, or corrosive atmosphere. There has been some improvement in thermal stability and package reliability. Rather than using polyphthalamide (PPA) or polycyclohexylenedimethylene terephthalate (PCT), high performance SMD LEDs use thermally enhanced epoxy molding compound (EMC) as the housing material and are designed with Quad Flat No-lead (QFN) anode/cathode pads. The EMC housing offers an improved resistance to discoloration at higher operating temperatures and thus holds off the onset of lumen degradation and chromaticity shift. The QFN design improves heat extraction efficiency and interconnect reliability.

Thermal Management

The ultimate goal of LED thermal management is to ensure that the light source receives minimal thermal stresses and thus it performs optimally over the lifetime of the product. Keeping the LED junction temperatures below the maximum rated temperature is critically important to achieve the reliability and high ROI expected from LED lighting. Troffers have a large housing, which simultaneously serves as the heat sink. The larger the surface area of a heat sink, the greater the natural convection of the waste heat into the surrounding atmosphere. Thermal management for LED troffers focuses on efficient heat transfer from the semiconductor junction of LEDs to the luminaire housing. The interface between the LED module and heat sink surface must provide a sufficient contact area for thermal conduction. The drive current is also a variable that should be considered in thermal management. When a higher drive current is applied to LEDs for a higher lumen output, there's also an increase amount of heat generated in the semiconductor packages. As such, the thermal transfer path must be dimensioned to equal the applied power load.

Color Stability

Among all LED failures that occur on LED troffers, color shifts (or chromaticity shifts) can be a terrible nuisance. While minor color deviations do not affect the practical use of LED luminaires, a dramatic shift toward the monochromatic blue, yellow, green, or red direction can mean the end of the luminaire's functional life. The ability of LEDs to maintain its spectral power distribution over time depends on package materials and construction. PLCC mid-power LED packages undergo a variety of chromaticity shift mechanisms. The discoloration of reflective package sidewall may result in a blue chromaticity shift. Oxidation of exposed lead frames, an increase in phosphor quantum efficiency, and operating the phosphor above the saturation flux level will also cause a shift towards the blue direction. Cracking or delamination of phosphor-binder layer in cool white packages with a YAG:Ce phosphor and discoloration/oxidation of the lenses can lead to a yellow shift. Chromaticity shifts in the green direction are due to chemical changes in the phosphor. A red shift can be observed when there's a reduction in the emissions from green phosphors in warm white LEDs.

To reduce the probability of color shifts, the use of LED packages with improved thermal stability is a prerequisite. Cheap mid-powder LEDs can exhibit a rapid shift in the blue direction because of the poor resistance to thermal degradation and photo-oxidation of the housing material (PPA, PCT) used in these packages. Discoloration of the plastic housings cannot be tolerated in LEDs since it leads to color shifts as well as depreciation in light output. Since most chromaticity shift mechanisms are temperature-dependent, thermal management should be prioritized in system design. A high ingress protection (IP) rating is required for troffers used in high humidity environments. Moisture can penetrate into the bulk of lens and encapsulant, causing delamination at the chip/phosphor interface due to hydro-mechanical stress. The moisture presence in packages can accelerate the kinetics of yellowing of plastic housing.

Color Temperature

A light source can be characterized by its color temperature. Correlated color temperature (CCT) is a metric that defines the color appearance of the light source. Color temperature is an important aspect of lighting because the composition of light it is related to not only affect visual perception, but also can trigger a wide range of emotional, psychological and physiological responses in humans. Most commercial applications in North America and many European countries use light sources of 3500 K to 5000 K. In many parts of the world, e.g. China, India and Mexico, however, color temperatures for office, school, hospital and institutional lighting are on the cool side of the Kelvin scale (6000 K - 6500 K). While there're no guidelines against the use of light source of extremely high CCTs in interior lighting applications, the biological effect and photobiological safety of light are usually ignored and the preference for bluish white light is the dreadful heritage of fluorescent lighting. On the other side, lighting manufacturers are discouraged to produce low CCT lighting products. This because the lower the CCT of a light source, the lower the luminous efficacy of the light source. The highest efficiency LEDs tend to be at the coolest end of the spectrum. Lower CCT LEDs generate more Stokes heat during phosphor down-conversion, which adds to the cost of thermal management.

In spaces typically used during the day, it makes sense to use a neutral white (around 3500 K) or cool white (under 5300 K) light source. Compared with warm white light, higher CCT light creates a daytime feeling and contributes to better visual acuity because it causes the pupils to contract. Nevertheless, the inherent science of using higher CCT light during working hours and the school day is that the higher the CCT, the more the short wavelength (blue) radiation. High intensity short wavelength radiation stimulates the intrinsically photosensitive retinal ganglion cells (ipRGC) photoreceptors. ipRGCs work through the suprachiasmatic nucleus (SCN) to suppress the secretion of melatonin, a sleep hormone, and enhances dopamine, serotonin, and cortisol production. Exposure to blue-enriched white light heightens sensations of pleasure, encourages alertness, raises concentration levels, increases motivation and commitment, and improves muscle coordination.

In general, the CCT of interior lighting should not exceed 5300 K which is the approximate color temperature for noon sunlight. The percentage of blue in the white light of CCTs around 4000 K is sufficiently high to stimulate ipRGC photoreceptors for a high level of alertness, efficiency and productivity during the working hours. Hospitals and offices typically require artificial lighting throughout the day and the operating time often extends into the evening. Prolonged exposure to optical radiation with an excessively high CCT may disrupt circadian rhythms. The risk of blue light hazard increases with the CCT of light. Although light source of 6500 K is considered safe in most applications, high radiance, short-wavelength light should be avoided in environments such as educational facilities where children are present because the lens of a child's eye filters blue light (400 - 500 nm) less efficiently than an adult's lens.

Color consistency is not critical in general lighting applications but still requires moderate control in order to avoid noticeable color variations from fixture to fixture (color uniformity), or within the beam of light (color angular uniformity). This specification should be monitored when a large number of LED troffers are to be installed in an open plan office. Depending on the application, LEDs used in troffers are binned to a 6- to 8-step MacAdam ellipse tolerance (or 6 - 8 SDCM). The smaller the MacAdam ellipse, the tighter the tolerance of color variations but the higher the cost of LEDs.

LED Troffers
Image courtesy of Focal Point

Human Centric Lighting (HCL)

The increasing awareness of the biological effects of light on humans is driving the demand for human centric lighting (HCL) systems that allow lighting to adapt to the cycle of natural sunlight or individual needs. People nowadays hardly get any natural daylight but are exposed in fixed, high CCT light that is very likely to disrupt circadian rhythms. HCL-enabled troffers employ tunable white technology to dynamically mix their output (using LEDs with two or more CCTs) to generate the desired intensity and color. With the ability set the CCT to any value between 2700K and 6500K and dim the system from 0% to 100%, tunable white LED troffers bring the dynamics of natural daylight into offices, patient rooms and schools. HCL systems can be programmed to mimic the changes in irradiance and spectrum of sunlight over the course of the day and help synchronize human biological clocks that control circadian rhythms to the outside world. In addition to promoting health and wellbeing through adaptive circadian lighting, these systems can also be used to evoke particular physiological and psychological responses that support moods and performance.

Color Rendition

Color rendition refers to the ability of a light source to reproduce the colors of various objects faithfully. To achieve excellent color rendition, the light source must produce a sufficient amount of radiant power at all wavelengths of the visible electromagnetic spectrum (typically from 380 to 780 nm). However, LEDs must undergo photoluminescence (phosphor down-conversion) to achieve broad spectrum white light. The down-conversion process results in loss in radiant energy (Stokes loss). The more the short wavelengths are down-converted, the lower the optical power because of the Stokes energy loss. The increase in longer wavelength radiant energy in the light spectrum leads to a reduction in luminous efficacy of radiation (LER) due to the low eye sensitivity over the longer wavelength light. This explains why lighting manufacturers are reluctant to offer high color rendering luminaires for general lighting applications.

Luminous efficacy often outweighs color quality in general office lighting. LED troffers typically use LEDs with a minimum color rendering index (CRI) of 80 which is tolerable but can lead to color distortion because of the missing wavelengths. In retail outlets, hospital exam rooms, laboratories, studios, classrooms, and applications where color discrimination is important, luminaries with a CRI of 90 or greater should be used. In these applications, the color rendering of the additional six saturated colors in the CRI system (R9 to R14) should be considered as well. The general color render index Ra calculates only the special CRI of the first eight CRI test colors, all of which have low to moderate chromatic saturation. Among the six saturated test colors, R9 is often cited as it shows the response with deep reds. In general, a minimum R9 value of 25 is required for applications where rendering of saturated colors is important.

LED Driver

An LED troffer is only as good as its driver, which rectifies commercial AC power into DC power and then regulates output current through a switching mode power supply (SMPS). The driver is designed to deliver a constant current output regardless of changes in the supply voltage or LED forward voltage. A power factor correction (PFC) circuit is used to improve the ratio of apparent power to real power over a wide input voltage range while suppressing the harmonic current for a low total harmonic distortion (THD). SMPS drivers exist as either a single-stage or a double-stage design. The single-stage approach uses only one circuit to perform both the PFC and the switching functions, whereas the two-stage approach uses a first-stage AC/DC PFC sub-circuit (boost, typically) and a second-stage DC/DC switching sub-circuit (buck, buck-boost or flyback). The main advantage of single-stage drivers are relatively high efficiency, low component count, and low total manufacturing cost. Two-stage driver circuits are more complicated and therefore more expensive. However, this design allows the circuit to deliver to its load a precisely regulated DC voltage having very small ripples and also to offer a dimming range from 0 to 100% in almost every output current range. All SMPS drivers require an additional filtering circuit to mitigate electromagnetic interference (EMI) generated during high-speed switching operation. For systems in which the driver is co-located with the light modules, galvanic isolation of I/O circuits should be considered or extra caution should be taken to safely isolate all metal contacts.

Dimming Control

It is often desirable to equip luminaires with a dimming functionality to provide variable light output. LED troffers are often designed as 0-10V dimmable. 0-10V is an analog dimming protocol which uses an analog low-voltage signal to adjust the attached load. The most common 0-10V controlled LED drivers dim from 100% to 10% because 0-10V dimming is based on the constant current reduction (CCR). At very low current (below 10%), the LEDs may not perform well. However, their 0-10V dimmable drivers that can dim down to 1% of initial lumens. LED drivers can also be configured to operate at the pulse-width modulation (PWM) mode which allows full-range, high color consistency dimming. For tunable white applications, either CCR or PWM can be used. The additional advantage of consistent CCT simplifies the color mixing process with PWM dimming, while the use of CCR would require an acceptable tolerance in the final CCT. LED drivers used in tunable white troffers are designed to accommodate multiple channels. A control protocol such as DMX or DALI is employed to control the intensity of each color of LED in the optical mix.


Absence of flicker is a key performance metric of LED troffers which undertake the task of creating optimum visual conditions in an office or educational environment where the occupants are exposed for a length of time to artificial light. Flicker and other visual anomalies can cause fatigue, blurred vision, eyestrain, and even trigger symptoms such as headaches, migraine and general malaise in certain populations. LED troffers operated by low cost, simple single-stage circuits are most likely to produce offensive flicker. The presence of residual ripple in the output current as a result of incomplete suppression of the alternating waveform after rectification is responsible for light flicker at a frequency of twice the AC line frequency. In order to mitigate flicker, the ripple must be smoothed by a filter circuit and the ripple values of the output current should fall within the ±10% tolerance. The depth of modulation of flicker can be measured using the percent flicker value. 10 percent flicker or less at 120 Hz is considered acceptable, and 4 percent flicker or less is considered safe for all populations.

Featured Products

Here's a roundup of some noteworthy products for your reference. (Disclaimer: We're not affiliated with any beneficiary of the external product links in this list.) This is a continuously updated list. We welcome product suggestions from those who take pride in building compelling value into their products. (Owners of products listed here are authorized to use our badge to promote your achievement. Please include a link to this page for listing verification.)

Best LED Troffer


GO-LED fixtures from Deco Lighting deliver consistent and balanced lighting with a luminous efficacy of up to 140 lm/W. High reflectance optical engine delivers main beam focus through the optically designed acrylic lens. A main diffuser and slanted troffer reduce the GO Fixture’s glare to provide soft, dispersed illumination with the comfort of inhabitants in mind. Linear ribbed acrylic lens overlay manages the balance of efficiency and aesthetics. Frosted acrylic lens easily removes for cleaning. A 3-channel tunable white solution delivering a wide range of color temperatures precisely along the blackbody curve to replicate natural daylight. A 5-channel color tuning solution allows to change saturation and hue while producing consistent color of 2 SDCM about the Planckian Curve over the life of the module. The Lutron Vive wireless lighting control solution combines a variety of lighting control strategies with controls and sensors to maximize efficiency and system flexibility.


Focal Point Aerion

Focal Point's Aerion architectural recessed LED luminaire features sweeping curves and contemporary lines that complement architecture. Proprietary linear LED module incorporates premium LEDs on a robust platform to achieve excellent thermal management. One piece 20 Ga. steel reflector and housing. Side access 20 Ga. steel ballast compartment. Positional brackets supplied as standard. 20 Ga. steel reflectors finished in matte satin white powder coat. .095" thick frosted white acrylic lamp diffusers with linear micro–prism pattern. Optional .020" thick acrylic accent strip available in round or square pattern. Aerion’s center lamp chamber provides minimal contrast between the diffuser and side reflectors creating even illumination and comfort. 20 Ga. steel reflectors finished in matte satin white powder coat. .095" thick frosted white acrylic lamp diffusers with linear micro–prism pattern. Lensed lamp chamber prevents debris accumulation and is easily cleanable. Optional .020" thick acrylic accent strip available in round or square pattern. Stylized sloped endcaps highlight Aerion’s distinctive look. Acrylic diffuser has been designed with an upper and lower track that accepts individual or combinations of accent strips.

Focal Point Aerion

Axis Aura

Axis Lighting offers a collection of cost-effective, architectural recessed luminaires that blend timeless aesthetics and high-performance LED technology to create pleasant, uniformly illuminated indoor environments that are free from glare. They feature high-performance LED technology, advanced lensing and integral controls that allow projects to remain well under lighting power allowances and comply with building energy codes. The Aura troffers feature a perfect blend of lighting performance and timeless aesthetic. A triple lens design with a ribbed center optical diffuser provides balanced brightness and visual comfort. High-performance LED technology combined with the flexibility of optional integral controls deliver energy considerable savings.

Axis Aura


ETAP has designed the U3 LED troffer with your comfort in mind. The innovative Shielded Lens technology screens off the LED light and prevents glare (UGR ≤ 19; UGR ≤ 16 for specific applications). These properties make the U3 suitable for diverse applications such as offices, classrooms, reception areas, public spaces, etc. The lens packs are recessed into shielding units, so that the light source is barely visible at eye level, resulting in very little contrast between the luminaire’s luminance and that of the ceiling. The U3 is available with two different lenses, which provide two light distributions: very wide-angle and medium-angle. The very wide-angle light distribution is ideal for medium and large spaces, such as, for example, open-plan offices. Luminaires with medium-angle light distribution are more suitable for smaller spaces such as classrooms or individual offices. The U3 comes in square and rectangular versions, with two light distributions and several lumen packages. The shielding units are available in a white or aluminum version. The U3 can be easily combined with sensors and/or modules for light control and emergency lighting, preventing you from having to install additional connections in the ceiling. Luminaires with air extraction are also possible. The troffer deliver sufficient luminous flux to efficiently illuminate a space. Depending on the version, the specific luminous flux is able to reach no less than 158 lm/W.


Cree CR

The Cree CR Series LED troffers are a family of commercial spec-grade LED troffers that offer solutions for highest energy savings, superior color quality or a balanced combination of performance and affordability. Only Cree LED troffers can offer an exclusive combination of industry-leading efficacy and excellent spectral quality. A unique combination of reflective and refractive optical components creates perfect balance of high efficiency lumen delivery and high level visual comfort. The high performance optical system provides volumetric illumination by creating an optimal mix of light to walls as well as vertical and horizontal surfaces. The glare-free optical system provides uniform light distribution while eliminating pixelation and color fringing. The Cree CR Series LED troffers can operate on Cree SmartCast® Power over Ethernet (PoE) platform for advanced energy management functionality, richer BMS integration and connection to the IoT. The connected lighting solution enables aggressive, intuitive control of Cree LED troffers for occupancy detection, daylight harvesting and other energy-paring strategies. With embedded intelligence and sophisticated algorithms, foundational energy savings from automatic light management based upon occupancy and daylight conditions more than justify SmartCast's use.

Cree CR

Some more info that might interest you
Best Desk Lamps
Best Desk Lamps
Desk lamps deliver critical task lighting that is closely associated with our work performance and well-being. This buying guide is intended to provide insights and kn...
Best LED Track Lights for Showrooms, Museums, Art Galleries, Retail Stores
Best LED Track Lights for Showrooms, Museums, Art Galleries, Retail Stores
Track lighting creates points of focus, establishes a hierarchy of importance, and reinforces design aesthetics. LED track lights provide a versatile, adaptable, modul...
Classroom Lighting Design | LED Light Fixtures for Schools and Educational Facilities
Classroom Lighting Design | LED Light Fixtures for Schools and Educationa...
Classroom lighting may be deemed of high quality if it contributes to a stimulating learning environment and enables students and instructors to accurately, comfortabl...
LED Panel Light | Edge-lit Ultra-thin Flat Panel LED Ceiling Light
LED Panel Light | Edge-lit Ultra-thin Flat Panel LED Ceiling Light
Edge-lit LED panel lights are surface emission devices that deliver soft, uniform and visually comfortable illumination through a multi-layered optical system.
Best Flush Mount Ceiling Lights for Living Rooms, Dining Rooms, Bedrooms
Best Flush Mount Ceiling Lights for Living Rooms, Dining Rooms, Bedrooms
Take a look at this buying guide that walks you through everything critical about flush mount LED ceiling lights. Find a list of exciting designs that stand out as a g...
Best Semi-flush Ceiling Lights for Living Rooms, Dining Rooms, Bedrooms, Hallways
Best Semi-flush Ceiling Lights for Living Rooms, Dining Rooms, Bedrooms, ...
A splendid collection of semi-flush LED ceiling lights that invite radiance and intrigue into your living rooms, dining rooms, bedrooms and foyers. There is no shortag...
Superloop Ring Pendant Lights Exude Designer Appeal in Restaurants, Showrooms, Galleries
Superloop Ring Pendant Lights Exude Designer Appeal in Restaurants, Showr...
A range of circular, square and rectangular pendant light fixtures that stands out as an inspiring addition to contemporary decor. Available in diffuse illumination an...
Fluxwerx LED Hanging Lights Define Modern Office Lighting With Upscale Style and Lighting Quality
Fluxwerx LED Hanging Lights Define Modern Office Lighting With Upscale St...
A 3-spoke or 4-spoke suspended ceiling light that takes advantage of anidolic optical architecture to deliver glare-free, visually pleasing illumination for modern off...
Dimmable Low Profile LED Ceiling Lights Convertible As Hanging, Flush, Recess Mount Fixtures
Dimmable Low Profile LED Ceiling Lights Convertible As Hanging, Flush, Re...
A family of low profile LED ceiling lights that can be pendant, flush and recess mounted for soft, uniform illumination. This round ambient light fixture radiates mode...
Axis Linear Office Light Fixtures Lead in Glare-free, Visually Comforting LED Lighting
Axis Linear Office Light Fixtures Lead in Glare-free, Visually Comforting...
A linear LED light fixture that can be recessed, pendant and surface mounted. The office light fixture is engineered to deliver glare-free, visually pleasing lighting ...
Cree LED Troffers Bring IoT-enabled Smart Lighting to Commercial Facilities
Cree LED Troffers Bring IoT-enabled Smart Lighting to Commercial Facilities
A portfolio of IoT enabled smart LED troffers that accommodate recessed, surface mount or suspended installations for both new construction and renovation. Featuring C...
LED Linear Trunking Lighting Systems: Intelligent Commercial Lighting Solutions
LED Linear Trunking Lighting Systems: Intelligent Commercial Lighting Sol...
Offering incredible design flexibility, unmatched performance and ease of installation, networked LED linear trunking systems are poised to play a major role in the In...
Flush Mount LED Ceiling Lights
Flush Mount LED Ceiling Lights
Flush mount LED ceiling lights offer robust application suitability, versatile design flexibility, and significant energy savings for both light retrofits and new inst...
Office Lighting Fixtures
Office Lighting Fixtures
Office lighting luminaires are being designed to harmonize function and appearance by blending in with the architecture. LED office lighting fixtures create a balance ...

Featured Guides
Most Popular
Latest Articles
Featured Products
Home | About Us | Plans & Rates | Contact | Terms | Privacy